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ПОРІВНЯННЯ МЕТОДІВ ПРОГНОЗУВАННЯ КОНЦЕНТРАЦІЙ PM₁₀ В КРИВОМУ РОЗІ В 

ЗИМОВИЙ ПЕРІОД 
 

У статті порівнюються два підходи для прогнозування концентрації дрібнодисперсних частинок PM₁₀ - класичне статистичне моделювання 
(множинна лінійна регресі, МЛР) та сучасний алгоритм машинного навчання Random Forest (RF). Об’єктом дослідження обрано одне з 
найбільших промислових міст України - Кривий Ріг, яке відоме своєю складною екологічною ситуацією. Розглянуто зимовий період 2024-2025 
рр., протягом якого виконано безперервний моніторинг PM₁₀ та метеорологічних показників за допомогою автоматизованої міні -станції Cairnet 
із сертифікованими датчиками. Проведено попередню обробку даних (очищення від аномалій, заповнення пропусків, нормалізація) та 
формування ознак, зокрема введено категоріальні змінні для частини доби, типу дня (вихідний/робочий) та інтенсивності викидів . Обидві моделі 
показали схожі добові та тижневі цикли концентрації PM₁₀: пікові значення спостерігаються у вечірній і нічний час, найнижчі - вдень, що 
узгоджується з очікуваннями та літературними даними. Водночас точність прогнозу суттєво різниться: Random Forest забезпечив значно вищу 
детермінацію (R²≈0,72 проти R²≈0,27 у регресії) і вдвічі меншу середню абсолютну похибку. Наведено порівняння важливості факторів для обох 
моделей: Random Forest виділив атмосферний тиск, температуру та вологість як ключові чинники, тоді як лінійна регресія приписує найбільшу 
вагу впровадженим штучним змінним (індикаторам часу доби та інтенсивності викидів). Проаналізовано причини цих розбіжностей з  огляду на 
нелінійні взаємодії та мультиколінеарність. Зроблено висновок, що для високоточного оперативного прогнозування рівня PM₁₀ доцільно 
застосовувати Random Forest, тоді як проста лінійна модель може використовуватися для швидких попередніх оцінок та інтерпретації впливу 
окремих факторів. 

Ключові слова: прогнозування; дрібнодисперсні частки; PM₁₀; лінійна регресія; Random Forest; важливість змінних; якість повітря. 
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COMPARISON OF METHODS FOR FORECASTING PM₁₀ CONCENTRATIONS IN KRYVYI RIH IN THE 

WINTER PERIOD 
 

The paper compares two approaches to forecasting PM₁₀ particulate matter concentrations - a classical statistical model (multiple linear regression) and a 
modern machine learning algorithm (Random Forest). The study object is Kryvyi Rih, one of the largest industrial cities in Ukraine known for its 
challenging environmental situation. The winter period of 2024-2025 was considered, during which continuous monitoring of PM₁₀ and meteorological 
parameters was carried out using an automated Cairnet mini-station with certified sensors. Data preprocessing was performed (outlier noise removal, gap 
filling, normalization) and feature engineering applied, including categorical variables for time of day, day type (weekend/weekday) and emissions 
intensity level. Both models revealed similar daily and weekly cycles in PM₁₀ concentration: peak values occurred in the evening and night, lowest - during 
daytime, consistent with expectations and literature. However, the forecast accuracy differed significantly: Random Forest achieved much higher 
determination (R²≈0.72 vs R²≈0.27 for regression) and halved mean absolute error. A comparison of factor importance for both models is presented: 
Random Forest identified atmospheric pressure, temperature and humidity as key drivers, whereas the linear regression assigns greatest weight to 
introduced artificial variables (time-of-day and emissions intensity indicators). The reasons for these discrepancies are analyzed in view of nonlinear 
interactions and multicollinearity. It is concluded that for high-precision real-time PM₁₀ forecasting, Random Forest is advisable, while a simple linear 
model can be used for quick preliminary assessments and interpretation of individual factor effects. 
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Вступ. Пилові частинки фракції PM₁₀ (аерозоль 

розміром до 10 мкм) є одним з найнебезпечніших 
забруднювачів атмосферного повітря у містах. Високі 
концентрації PM₁₀ становлять загрозу для здоров’я 
населення, спричиняючи захворювання дихальної та 
серцево-судинної систем і підвищуючи смертність [1]. 
За даними Європейського агентства з довкілля, 
дрібнодисперсний пил залишається найбільшим 
екологічним ризиком для здоров’я у Європі [2]. В 
Україні промислові центри, зокрема місто Кривий Ріг, 
систематично фіксують перевищення граничних 
концентрацій пилу в приземному шарі атмосфери. Це 
обумовлює актуальність задачі прогнозування рівнів 
PM₁₀ для своєчасного інформування населення та 
впровадження заходів із зниження викидів. Значний 
внесок у запиленість атмосфери міст вносять місцеві 
промислові та транспортні джерела [3]. У Кривому Розі 
- одному з найбільших металургійних центрів Європи - 
на забруднення повітря пилом впливають гірничо-
збагачувальні комбінати, металургійні підприємства та 

інтенсивний автотранспорт. У зимовий період ситуація 
ускладнюється метеорологічними умовами: часті 
температурні інверсії і слабкі вітри сприяють 
накопиченню домішок у приземному шарі. В цих 
умовах традиційні підходи моніторингу (стаціонарні 
пости контролю) потребують підсилення засобами 
математичного моделювання, щоб робити 
короткострокові прогнози концентрацій забруднювачів. 
Нові регуляторні вимоги також стимулюють розвиток 
систем прогнозування. Зокрема, нова Директива ЄС 
2024/2881 встановлює суттєво жорсткіші нормативи 
якості повітря (граничні річні концентрації PM₂.₅ та 
PM₁₀ знижено до 10 та 20 μг/м³ відповідно) і зобов’язує 
застосовувати моделювання для інформування про 
перевищення [4]. В Євросоюзі такі прогностичні моделі 
вже інтегруються у практику оцінки якості повітря. Для 
України актуальним є запровадження сучасних методів, 
зокрема машинного навчання, до задач екологічного 
моніторингу промислових регіонів.  
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Попередні дослідження Kamińska [5] у Вроцлаві 
(Польща) показало високу точність моделі Random 
Forest при прогнозуванні забруднення повітря з 
урахуванням дорожнього руху та метеорологічних 
параметрів. Rubal і Kumar [6] розробили еволюційно-
адаптований підхід, який комбінує алгоритм 
диференційної еволюції та Random Forest для 
прогнозування концентрацій забруднювачів повітря. 
Stoimenova та співавт. [7] використали метод 
регресійних дерев для прогнозування рівнів PM₁₀ у 
міських умовах. Chen та співавт. [8] проаналізували 
просторово-часові закономірності концентрації PM₁₀ у 
Китаї із застосуванням підходу Random Forest до 
супутникових даних. Plocoste і Laventure [9] 
прогнозували концентрацію PM₁₀ у країнах 
Карибського басейну за допомогою моделей машинного 
навчання. Zárate та Rodríguez [10] застосували Random 
Forest у моделі прогнозування рівнів PM₁₀ у Мехіко. 
Abuouelezz та співавт. [11] провели порівняльний аналіз 
моделей машинного навчання для короткотермінового 
прогнозування PM₂.₅ і PM₁₀ в умовах ОАЕ. Adamenko і 
Arkhypova [12] досліджували закономірності змін рівнів 
PM₂.₅ і PM₁₀ у атмосферному повітрі Прикарпаття. 
Чугай і Терземан [13] продемонстрували можливість 
прогнозування забруднення повітря NO₂ в Одесі з 
використанням моделей машинного навчання. Gupta та 
співавт. [14] здійснили порівняльний аналіз моделей 
машинного навчання для прогнозування індексу якості 
повітря. 

Таким чином. алгоритми машинного навчання 
(дерева рішень, ансамблі, нейронні мережі) здатні 
врахувати нелінійні багатофакторні залежності і 
підвищити точність прогнозів забруднення повітря 
порівняно з традиційними статистичними моделями 
[15].  

Мета роботи. Мета роботи полягає в підвищенні 
точності короткострокового прогнозування 
концентрацій PM₁₀ у великому промисловому місті під 
час зимового періоду на основі даних моніторингу та 
сучасних методів аналізу даних. Для реалізації 
поставленої мети у дослідженні порівнюються два 
підходи до побудови прогнозних моделей: традиційний 
статистичний метод множинної лінійної регресії та 
сучасний метод машинного навчання Random Forest. 
Задачі дослідження передбачають збір і підготовку 
вихідних даних про концентрації PM₁₀ та 
метеорологічні параметри, розробку та оптимізацію 
моделей обох типів, оцінювання їхньої точності та 
здатності відтворювати відомі закономірності, а також 
аналіз чинників, що найбільше впливають на рівень 
забруднення повітря взимку. За результатами 
порівняння визначений найбільш перспективний підхід 
до прогнозування та сформовані рекомендації щодо 
підвищення якості короткострокових прогнозів для 
подальшого впровадження у систему моніторингу 
атмосферного повітря. 

Методика дослідження. Об’єктом дослідження 
обрано атмосферне повітря промислового міста Кривий 
Ріг у зимовий період (листопад 2024 р. - 
березень 2025 р.). Вимірювання концентрацій PM₁₀ та 
пов’язаних метеорологічних параметрів здійснювалися 
за допомогою автономної міні‑станції ENVEA Cairnet, 
оснащеної лазерним сенсором Cairsens і датчиками 
газових домішок (H₂S, NH₃, NO₂, O₃, CO, SO₂). Станція 
встановлена приблизно на висоті 3 м над ґрунтом у 
Центрально‑Міському районі міста, забезпечує 
безперервний збір даних із кроком 15 хвилин і передачу 
їх онлайн та відповідає вимогам міжнародних 
стандартів якості даних EN 15267, MCERTS і EPA. 
Вона вимірює масову концентрацію часток PM₁₀, PM₂.₅ 
та PM₁, газові домішки й метеорологічні величини 
(температуру, відносну вологість, атмосферний тиск, 
швидкість та напрям вітру); діапазон вимірювання для 
PM₁₀ становить 0-1000 μг/м³, межа виявлення <5 μг/м³, 
дискретність 0,01 μг/м³.  

Набір даних охоплює період з 1 листопада 2024 р. 
до 31 березня 2025 р. та містить понад 9000 середніх 
(15‑хвилинних) спостережень концентрацій PM₁₀. 
Паралельно реєструвалися температура, відносна 
вологість, атмосферний тиск, швидкість і напрям вітру, 
а також часові атрибути - година доби, день тижня, 
дата. В прцесі обробки даних впроваджено додаткові 
пояснювальні ознаки: категоріальний показник «час 
доби» з чотирма інтервалами (ніч - 00:00-06:00, ранок -
 06:00-12:00, день - 12:00-18:00, вечір - 18:00-24:00), 
бінарну змінну «тип дня» (0 - робочий, 1 - вихідний) та 
числовий індекс «інтенсивність викидів», що описує 
умовний рівень антропогенного навантаження 
(ніч = 1,00, ранок = 1,75, день = 1,55, вечір = 2,15). 

Перед побудовою моделей виконано очистку й 
підготовку даних. Спочатку видалено грубі аномальні 
сплески у рядах концентрацій та метеопараметрів 
(менше 0,5 % записів) за допомогою меж квартильного 
інтервалу; пропущені значення заповнено лінійною 
інтерполяцією або перенесенням попереднього 
показника. Для забезпечення рівнозначного впливу 
змінних усі кількісні показники було нормалізовано до 
нульового середнього і одиничної стандартної девіації. 

Для короткострокового прогнозування 
концентрацій PM₁₀ застосовано два підходи: базовий 
статистичний метод множинної лінійної регресії (МЛР) 
та ансамблевий метод машинного навчання Random 
Forest (RF).  

Лінійна регресія (1), передбачає, що залежність 
між концентрацією PM₁₀ та набором пояснювальних 
змінних є лінійною: 

PM10,i=β0+β1 Ti+β2 Hi+β3 Pi+β4 Wi+β5 Dніч,i+β6 Dранок,i+β7

Dдень,i+β8 Dвечір,i+β9 Dвихідний,i+β10 Ii+ℰi   (1) 
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Де PM10,i - концентрація PM₁₀, β0 - β10 - вагові 
коефіцієнти метеорологічних і часових змінних, ℰi – 
випадкова похибка. 

Таке припущення дозволяє інтерпретувати кожен 
коефіцієнт: наприклад, у нашій моделі зростання 
температури на 1 °C супроводжувалося зменшенням 
прогнозованої PM₁₀ приблизно на 6,7 μг/м³ 

Random Forest (2), це ансамблевий алгоритм, який 
поєднує багато простих моделей та усереднює їхні 
результати. На відміну від лінійної регресії, він здатен 
відображати складні й нелінійні залежності між 
параметрами. У нашому випадку було використано 200 
таких моделей 

 
f(x) = (1/B) Σ_{b=1}^{B} f_b(x)  (2) 

 
де: В - кількість дерев у моделі, f_b(x) - прогноз b-го 
дерева, f(x) - узагальнений прогноз Random Forest. 

 
Обидві моделі навчалися на одній навчальній 

вибірці (1 листопада 2024 р. - 15 березня 2025 р.), що 
охоплює приблизно 85 % даних; тестування 
проводилося на вибірці за останні 16 днів березня (16-
31.03.2025 р.), що дозволяє оцінити здатність моделей 
до узагальнення. Параметри підбиралися шляхом 
перехресної перевірки на навчальному наборі: для МЛР 
використано стандартну реалізацію з 
бібліотеки statsmodels у Python 3; для RF застосовано 
Random Forest Regressor із 200 деревами, максимальною 
глибиною 20 та критерієм розбиття MSE (Mean Squared 
Error - середня квадратична похибка). Якість прогнозів 
оцінювали за коефіцієнтом детермінації R², середньою 
абсолютною похибкою (MAE) та кореневою 
середньоквадратичною похибкою (RMSE), (наскільки в 
середньому наші прогнози відрізняються від реальних 
значень). 

Результати та обговорення У цьому розділі 
наведено результати моделювання та аналіз їхньої 
достовірності. Обидва підходи підтвердили наявність 
вираженого добового циклу змін концентрації PM₁₀ у 
Кривому Розі: вечірні та нічні години характеризуються 
підвищеним рівнем забруднення, а вдень фіксується 
спад до мінімуму. У середньому у нічний час (00:00-
06:00) концентрація на ≈5 μг/м³ (≈12 %) вища за 
добовий рівень, тоді як вдень (12:00-18:00) вона на 
≈10 μг/м³ (≈25 %) нижча за середнє значення. Ці 
закономірності зумовлюються як накопиченням пилу 
під час приземних інверсій та відсутності сонячного 
прогріву, так і зростанням антропогенного 
навантаження у вечірні години. На рис.1 рамкові 
діаграми показують медіани, квартилі та аномальні 
значення. 

Вплив умовної інтенсивності викидів виявив 
тісний зв’язок із рівнем PM₁₀. Обидві моделі показують 
підвищення медіан концентрації зі збільшенням 
коефіцієнта інтенсивності від 1,00 (ніч) до 2,15 (вечір), 

що відображає внесок промислових і транспортних 
джерел. Водночас Random Forest демонструє більш 
згладжену прогресію: відсутні різкі стрибки, помітно 
зменшений вплив поодиноких пікових точок, особливо 
в категорії «вечір». 

 
Рисунок 1 - Розподіл концентрацій PM₁₀ для різних 

періодів доби 

 
Рисунок 2 - Гістограми розподілу виміряних 

концентрацій PM₁₀,  навчальна вибірка (грудень-середина 
березня) 

 
Рисунок 3 - Гістограми розподілу виміряних концентрацій 

PM₁₀,  тестова вибірка (кінець березня ) 
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Множинна лінійна регресія, навпаки, переоцінює 
розкид для максимального рівня і породжує значні 
відхилення. 
Статистичний розподіл виміряних концентрацій 
наведено на гістограмах (рис. 2, рис.3). Понад 90 % 
значень зосереджено в діапазоні до 60 μг/м³, тоді як у 
«хвості» трапляються окремі піки понад 200 μг/м³. У 

навчальній вибірці таких аномалій більше, ніж у 
тестовій (кінець березня), вона характеризується 
сприятливішими умовами та нижчим середнім рівнем 
(~31 μг/м³ проти ~41 μг/м³ у повному наборі). Загалом 
більшу частину часу ситуація відносно стабільна, але 
іноді виникають  короткочасні сплески через поєднання 
несприятливих метеорологічних умов і емісій. 

 
Рисунок 4 - Оцінка точності лінійної регресії 

 
Порівняння точності моделей засвідчило перевагу 
Random Forest (рис. 4, рис5). На навчальній вибірці 
коефіцієнт детермінації R² становив ~0,39 для МЛР та 
Random Forest, тобто зменшилася більш ніж удвічі. 
~0,96 для RF; на тестовій - відповідно ~0,27 і ~0,72. 
Середня абсолютна похибка склала близько 18 μг/м³ 
для регресійної моделі і лише ~8,5 μг/м³ для 
Random Forest, тобто зменшилася більш ніж удвічі. 

Графіки фактичних проти прогнозованих значень 
(рис. 4, рис.5), демонструють сильне розсіювання у 
випадку лінійної регресії і щільне групування точок 
вздовж діагоналі y=x для RF (рис. 4, 5)  

Аналіз залишків (помилок) показує, що у регресії 
вони зміщені й дисперсія зростає зі збільшенням 
прогнозованого рівня (гетероскедастичність): модель 
систематично недооцінює піки PM₁₀ та переоцінює 
низькі концентрації. У Random Forest залишки 
розподілені симетрично навколо нуля, без помітної  
залежності від значення прогнозу, що вказує на 
відсутність систематичної похибки. 

Рисунок 6 – показує залежність помилки прогнозу від 
рівня прогнозованої концентрації: для лінійної регегресії 
(залишки зміщені і зростають при збільшенні PM₁₀); для 
моделі - Random Forest (залишки рівномірні, систематична 
складова відсутня).   

Таблиця 1 узагальнює оцінки впливу незалежних 
факторів у побудованих моделях. Для МЛР важливість 

фактора визначається модулем його коефіцієнта, тоді як 
у Random Forest - відносним внеском у зменшення 
помилки 

У Random Forest найвпливовішими виявилися 
атмосферний тиск (~27 %), відносна вологість (~25 %) і 
температура повітря (~25 %), які сумарно забезпечують 
понад 77 % загального впливу на результат. Ці 
результати відповідають фізичним закономірностям: 
антициклони з низькою температурою і високою 
вологістю сприяють накопиченню пилу. Швидкість 
вітру (~8 %) має помірний вплив, решта змінних 
отримали невелику вагу (1-4 %). Натомість лінійна 
регресія надає високі коефіцієнти штучно введеним 
змінним: інтенсивності викидів, категоріям часу доби та 
типу дня; метерологічним умовам відведено меншу 
роль, оскільки кореляція між змінними розподіляє вагу 
між ними. Це свідчить, що лінійна модель не здатна 
адекватно врахувати нелінійні взаємозв’язки та 
приховані кореляції. 

Переваги та недоліки розглянутих методів 
узагальнено в табл. 2. Множинна лінійна регресія є 
простою та легко інтерпретованою: вона швидко 
обчислюється, дозволяє чітко бачити внесок кожної 
змінної й придатна для попередньої оцінки. Проте 
лінійний підхід не враховує нелінійність і взаємодію 
факторів, чутливий до мультиколінеарності та викидів, 
що призводить до низької точності. Random Forest, 
навпаки, забезпечує високу точність, враховує складні 
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залежності і стійкий до аномалій; недоліками є більша 
ресурсомісткість та менша прозорість інтерпретації 

(модель - «чорний ящик»). 

 
 

 

 
 

Рисунок 5 - Оцінка точності моделі Random Forest
   

 
Рисунок 6 - Залежність помилки прогнозу від рівня прогнозованої концентрації 
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Таблиця 1 - Порівняння оцінок впливу факторів у моделях 

 

Незалежна змінна Модель лінійної регресії (μг/м³ на 
1 од.) Random Forest: відносна важливість (%) 

Температура T (°C) 
-6.70 - зі збільшенням температури 
на 1 °C PM₁₀ зменшується 
приблизно на 6.7 мкг/м³. 

≈ 25 % - одна з трьох найважливіших ознак; 
охолодження повітря суттєво підвищує рівень 
пилу. 

Відносна вологість RH 
(%) 

+0.20 - кожний відсоток вологості 
підвищує PM₁₀ на 0.2 мкг/м³; ефект 
слабкий. 

≈ 25 % - має великий вплив; висока вологість 
сприяє накопиченню аерозолю. 

Атмосферний тиск P 
(мм рт. ст.) 

-0.82 - підвищення тиску на 
1 мм рт. ст. зменшує PM₁₀ 
приблизно на 0.82 мкг/м³. 

≈ 27 % - найважливіша ознака; високий тиск 
асоціюється з антициклонічними умовами та 
накопиченням частинок, тому модель активно 
враховує його зміну. 
 

Напрям вітру SW 
(градуси) 

+0.01 - ефект практично нульовий; 
напрямок вітру у градусах мало 
впливає на PM₁₀. 

≈ 3-4 % - відіграє другорядну роль, але деякі 
сектори напрямків можуть мати локальні 
джерела пилу. 

Швидкість вітру DW 
(м/с) 

-15.89 - збільшення швидкості на 
1 м/с зменшує PM₁₀ приблизно на 
16 мкг/м³, що відображає ефективне 
очищення атмосфери вітром. 

≈ 8 % - четверта за впливом ознака; сильний 
вітер зменшує концентрації, хоча й може 
переносити пил з інших районів. 

Тип дня 
(вихідний/робочий) 

-6.10 - у вихідні PM₁₀ нижчий на 
~6.1 мкг/м³ порівняно з робочими 
днями. 

≈ 3-4 % – має помітний, але невеликий вплив; 
зниження транспортної активності у вихідні 
зменшує забруднення. 

Інтенсивність викидів 

+20.37 - збільшення умовної шкали 
емісій на 1 пункт підвищує PM₁₀ на 
20.4 мкг/м³ (використовувались 
коефіцієнти 1.00, 1.55, 1.75, 2.15 для 
ночі, дня, ранку та вечора 
відповідно). 

≈ 1-2 % - має невелику відносну вагу, оскільки 
частково корелює з метеопараметрами. 

D_ранок (06:00–12:00) -4.31 - вранці PM₁₀ у середньому на 
4.3 мкг/м³ нижче, ніж уночі. 

≈ 1-2 % - добові категорії загалом мають низьку 
вагу. 

D_день (12:00–18:00) -10.67 - вдень PM₁₀ у середньому на 
10.7 мкг/м³ нижче, ніж уночі. ≈ 1-2 % - невеликий внесок. 

D_вечір (18:00–24:00) +5.08 - ввечері PM₁₀ на 5.1 мкг/м³ 
вище від нічного рівня. ≈ 1-2 % - внесок невеликий. 
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Таблиця 2 - Переваги та недоліки прогнозних моделей 
 

Змінна Чому різна важливість 

Атмосферний 
тиск (P) 

У Random Forest тиск входить до трійки найважливіших параметрів (>25 % сумарної 
важливості), бо невеликі коливання тиску у поєднанні з температурою та вологістю 
істотно змінюють режим розсіювання часток. Лінійна регресія дає невеликий 
коефіцієнт (β₃ ≈ –0,82) і, відповідно, низьку відносну важливість, оскільки тиск 
колінеарний з іншими метеопараметрами і його лінійний ефект частково 
«поглинається» температурою та швидкістю вітру. 

Температура (T) Random Forest фіксує, що низька температура сприяє накопиченню пилу (≈25 % 
важливості), оскільки за низьких температур часто спостерігається висока 
інтенсивність викидів і слабкий вітер. У лінійній регресії температура має помітний 
негативний коефіцієнт (β₁ ≈ –6,70), але за абсолютною величиною вона поступається 
викидам і швидкості вітру. 

Відносна 
вологість (RH) 

Вологість у Random Forest отримує високу важливість (понад 25 %), бо модель 
враховує нелінійний вплив: підвищена вологість сприяє конденсації та злипанню 
часток, а в поєднанні з низькою температурою може значно підвищувати PM₁₀. У 
регресії коефіцієнт β₂ ≈ 0,20 є малим; RH слабко корелює з PM₁₀ й частково залежить 
від температури, тому її лінійний вплив невеликий. 

Швидкість вітру 
(DW) 

Для лінійної регресії це один із найсильніших факторів: β₅ ≈ –15,89, що означає, що 
кожен метр/секунду зменшує PM₁₀ майже на 16 μг/м³. Random Forest оцінює швидкість 
вітру на рівні ≈8 % важливості: ефект вітру може перекриватися змінами температури 
та тиску, і модель розподіляє його внесок між корельованими ознаками. 

Напрямок вітру 
(SW) 

У лінійній моделі коефіцієнт β₄ ≈ +0,01 практично нульовий, оскільки напрямок 
кодували одним числом (0–360°) і не врахували циклічність; модель не розрізняє 
близькі напрями (наприклад, 350° і 10°). Random Forest теж оцінює напрямок як 
малозначущий (~3–4 %), але трохи вище, бо дерева рішень можуть виявляти окремі 
«сектори», що асоціюються з підвищеним PM₁₀. 

Weekend / тип 
дня 

Вихідні дні мають негативний вплив у регресії (β₆ ≈ –6,10) і помірну важливість у 
Random Forest (~3–4 %). Обидві моделі показують, що у вихідні PM₁₀ нижче через 
менший транспорт і промислову активність, але Random Forest вважає цю змінну менш 
важливою, бо добові цикли вже частково враховані інтенсивністю викидів та 
метеопараметрами. 

Інтенсивність 
викидів 

У лінійній регресії це найвагоміший фактор (β₇ ≈ +20,37), оскільки змінна відображає 
перехід від нічних до вечірніх пік, і модель не може захопити нелінійність добового 
циклу і взаємодію з погодою. У Random Forest інтенсивність викидів має лише 1–2 % 
важливості: добові цикли вже враховуються температурою, вітром і тиском, тому 
окрема ознака добавляє мало інформації. 

Категорії часу 
доби (ранок, 
день, вечір) 

У регресії ці даммі-змінні мають помітні коефіцієнти: β₈ ≈ –4,31, β₉ ≈ –10,67, 
β₁₀ ≈ +5,08. Вони потрібні, щоб описати добовий цикл у лінійній формі. Random Forest 
відносить їх до менш важливих (1–2 %), оскільки добові коливання моделюються через 
інші показники: температура, швидкість вітру і тиск змінюються протягом доби і 
дають змозі деревам рішень відокремити нічні та денні умови без спеціальних даммі-
змінних. 

 
Висновки. Короткострокове прогнозування 

концентрацій суспендованих часток PM₁₀ у великому 
промисловому центрі (м. Кривий Ріг) виконано із 
застосуванням традиційної множинної лінійної регресії 

та алгоритму Random Forest. Отримані результати 
дозволяють сформулювати такі висновки: 

1. Виявлено виражені добові та тижневі цикли зміни 
рівнів PM₁₀: накопичення пилу у вечірньо-нічний період 
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і денне зниження, а також зменшення середніх 
концентрацій у вихідні порівняно з буднями. Обидві  
моделі однаково відтворюють ці циклічні коливання, 
що відображено на відповідних рисунках. 
2. Використання Random Forest забезпечує суттєве 
підвищення точності прогнозів. На відкладеній тестовій 
вибірці цей метод показав коефіцієнт детермінації 
близько 0,72 проти 0,27 для лінійної регресії, а середня 
абсолютна похибка зменшилася більш ніж удвічі. 
Random Forest не має систематичного зміщення, 
достовірно описує низькі та високі концентрації та 
краще відтворює статистичний розподіл вимірювань. 
3. Проведений аналіз визначивосновними 
детермінантами рівня PM₁₀ атмосферний тиск, 
температуру і відносну вологість, сумарний внесок яких  
у прогноз Random Forest перевищує 75 %. 
Антициклональні умови з високим тиском та морозною 
погодою сприяють накопиченню пилу, а циклональні 
процеси і вітер зменшують концентрацію. Швидкість і 
напрям вітру, тип дня та рівень викидів мають менший, 
але помітний вплив, що відображено у таблиці впливу 
факторів. 
4. Модель множинної лінійної регресії доцільно 
застосовувати для швидких оцінок та інтерпретації 
впливу окремих змінних, але через припущення 
лінійності вона поступається Random Forest за точністю 
та стабільністю. 
5. Рекомендовано впроваджувати системи 
прогнозування, що поєднують дані міні-станцій 
моніторингу з сучасними алгоритмами машинного 
навчання, зокрема Random Forest. Такі системи 
дозволять в режимі реального часу попереджати про 
епізоди високого забруднення та сприятимуть 
прийняттю управлінських рішень щодо зниження 
викидів. Подальші дослідження варто спрямувати на 
використання складніших моделей (градієнтний 
бустинг, нейронні мережі) та врахування додаткових 
чинників для підвищення точності і пояснювальної 
здатності прогнозів. 
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